You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

143 lines
5.2 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticQuad.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkQuadraticQuad
* @brief cell represents a parabolic, 8-node isoparametric quad
*
* vtkQuadraticQuad is a concrete implementation of vtkNonLinearCell to
* represent a two-dimensional, 8-node isoparametric parabolic quadrilateral
* element. The interpolation is the standard finite element, quadratic
* isoparametric shape function. The cell includes a mid-edge node for each
* of the four edges of the cell. The ordering of the eight points defining
* the cell are point ids (0-3,4-7) where ids 0-3 define the four corner
* vertices of the quad; ids 4-7 define the midedge nodes (0,1), (1,2),
* (2,3), (3,0).
*
* @sa
* vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
* vtkQuadraticHexahedron vtkQuadraticWedge vtkQuadraticPyramid
*/
#ifndef vtkQuadraticQuad_h
#define vtkQuadraticQuad_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkQuad;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticQuad : public vtkNonLinearCell
{
public:
static vtkQuadraticQuad* New();
vtkTypeMacro(vtkQuadraticQuad, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() override { return VTK_QUADRATIC_QUAD; }
int GetCellDimension() override { return 2; }
int GetNumberOfEdges() override { return 4; }
int GetNumberOfFaces() override { return 0; }
vtkCell* GetEdge(int) override;
vtkCell* GetFace(int) override { return nullptr; }
//@}
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
/**
* Clip this quadratic quad using scalar value provided. Like contouring,
* except that it cuts the quad to produce linear triangles.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
/**
* Return the center of the pyramid in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
static void InterpolationFunctions(const double pcoords[3], double weights[8]);
static void InterpolationDerivs(const double pcoords[3], double derivs[16]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[8]) override
{
vtkQuadraticQuad::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[16]) override
{
vtkQuadraticQuad::InterpolationDerivs(pcoords, derivs);
}
//@}
protected:
vtkQuadraticQuad();
~vtkQuadraticQuad() override;
vtkQuadraticEdge* Edge;
vtkQuad* Quad;
vtkPointData* PointData;
vtkDoubleArray* Scalars;
// In order to achieve some functionality we introduce a fake center point
// which require to have some extra functionalities compare to other non-linar
// cells
vtkCellData* CellData;
vtkDoubleArray* CellScalars;
void Subdivide(double* weights);
void InterpolateAttributes(
vtkPointData* inPd, vtkCellData* inCd, vtkIdType cellId, vtkDataArray* cellScalars);
private:
vtkQuadraticQuad(const vtkQuadraticQuad&) = delete;
void operator=(const vtkQuadraticQuad&) = delete;
};
//----------------------------------------------------------------------------
inline int vtkQuadraticQuad::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = 0.5;
pcoords[2] = 0.;
return 0;
}
#endif