You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

149 lines
5.5 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticLinearQuad.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkQuadraticLinearQuad
* @brief cell represents a quadratic-linear, 6-node isoparametric quad
*
* vtkQuadraticQuad is a concrete implementation of vtkNonLinearCell to
* represent a two-dimensional, 6-node isoparametric quadratic-linear quadrilateral
* element. The interpolation is the standard finite element, quadratic-linear
* isoparametric shape function. The cell includes a mid-edge node for two
* of the four edges. The ordering of the six points defining
* the cell are point ids (0-3,4-5) where ids 0-3 define the four corner
* vertices of the quad; ids 4-7 define the midedge nodes (0,1) and (2,3) .
*
* @sa
* vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticQuad
* vtkQuadraticHexahedron vtkQuadraticWedge vtkQuadraticPyramid
*
* @par Thanks:
* Thanks to Soeren Gebbert who developed this class and
* integrated it into VTK 5.0.
*/
#ifndef vtkQuadraticLinearQuad_h
#define vtkQuadraticLinearQuad_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkLine;
class vtkQuad;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticLinearQuad : public vtkNonLinearCell
{
public:
static vtkQuadraticLinearQuad* New();
vtkTypeMacro(vtkQuadraticLinearQuad, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() override { return VTK_QUADRATIC_LINEAR_QUAD; }
int GetCellDimension() override { return 2; }
int GetNumberOfEdges() override { return 4; }
int GetNumberOfFaces() override { return 0; }
vtkCell* GetEdge(int) override;
vtkCell* GetFace(int) override { return nullptr; }
//@}
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double* closestPoint, int& subId, double pcoords[3],
double& dist2, double* weights) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
/**
* Clip this quadratic linear quad using scalar value provided. Like
* contouring, except that it cuts the quad to produce linear triangles.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
/**
* Return the center of the pyramid in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
static void InterpolationFunctions(const double pcoords[3], double weights[6]);
static void InterpolationDerivs(const double pcoords[3], double derivs[12]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[6]) override
{
vtkQuadraticLinearQuad::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[12]) override
{
vtkQuadraticLinearQuad::InterpolationDerivs(pcoords, derivs);
}
//@}
/**
* Return the ids of the vertices defining edge (`edgeId`).
* Ids are related to the cell, not to the dataset.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints.
*/
static int* GetEdgeArray(vtkIdType edgeId);
protected:
vtkQuadraticLinearQuad();
~vtkQuadraticLinearQuad() override;
vtkQuadraticEdge* Edge;
vtkLine* LinEdge;
vtkQuad* Quad;
vtkDoubleArray* Scalars;
private:
vtkQuadraticLinearQuad(const vtkQuadraticLinearQuad&) = delete;
void operator=(const vtkQuadraticLinearQuad&) = delete;
};
//----------------------------------------------------------------------------
inline int vtkQuadraticLinearQuad::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = 0.5;
pcoords[2] = 0.;
return 0;
}
#endif