You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

209 lines
7.6 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkHexahedron.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkHexahedron
* @brief a cell that represents a linear 3D hexahedron
*
* vtkHexahedron is a concrete implementation of vtkCell to represent a
* linear, 3D rectangular hexahedron (e.g., "brick" topology). vtkHexahedron
* uses the standard isoparametric shape functions for a linear
* hexahedron. The hexahedron is defined by the eight points (0-7) where
* (0,1,2,3) is the base of the hexahedron which, using the right hand rule,
* forms a quadrilaterial whose normal points in the direction of the
* opposite face (4,5,6,7).
*
* @sa
* vtkConvexPointSet vtkPyramid vtkTetra vtkVoxel vtkWedge
*/
#ifndef vtkHexahedron_h
#define vtkHexahedron_h
#include "vtkCell3D.h"
#include "vtkCommonDataModelModule.h" // For export macro
class vtkLine;
class vtkQuad;
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkHexahedron : public vtkCell3D
{
public:
static vtkHexahedron* New();
vtkTypeMacro(vtkHexahedron, vtkCell3D);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* See vtkCell3D API for description of these methods.
*/
void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override;
// @deprecated Replaced by GetEdgePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
VTK_LEGACY(virtual void GetEdgePoints(int edgeId, int*& pts) override);
vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override;
// @deprecated Replaced by GetFacePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
VTK_LEGACY(virtual void GetFacePoints(int faceId, int*& pts) override);
void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override;
vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) override;
vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) override;
vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) override;
vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override;
bool GetCentroid(double centroid[3]) const override;
bool IsInsideOut() override;
//@}
/**
* static constexpr handle on the number of points.
*/
static constexpr vtkIdType NumberOfPoints = 8;
/**
* static contexpr handle on the number of faces.
*/
static constexpr vtkIdType NumberOfEdges = 12;
/**
* static contexpr handle on the number of edges.
*/
static constexpr vtkIdType NumberOfFaces = 6;
/**
* static contexpr handle on the maximum face size. It can also be used
* to know the number of faces adjacent to one face.
*/
static constexpr vtkIdType MaximumFaceSize = 4;
/**
* static constexpr handle on the maximum valence of this cell.
* The valence of a vertex is the number of incident edges (or equivalently faces)
* to this vertex. It is also equal to the size of a one ring neighborhood of a vertex.
*/
static constexpr vtkIdType MaximumValence = 3;
//@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() override { return VTK_HEXAHEDRON; }
int GetNumberOfEdges() override { return 12; }
int GetNumberOfFaces() override { return 6; }
vtkCell* GetEdge(int edgeId) override;
vtkCell* GetFace(int faceId) override;
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
//@}
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
/**
* Return the case table for table-based isocontouring (aka marching cubes
* style implementations). A linear 3D cell with N vertices will have 2**N
* cases. The returned case array lists three edges in order to produce one
* output triangle which may be repeated to generate multiple triangles. The
* list of cases terminates with a -1 entry.
*/
static int* GetTriangleCases(int caseId);
static void InterpolationFunctions(const double pcoords[3], double weights[8]);
static void InterpolationDerivs(const double pcoords[3], double derivs[24]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[8]) override
{
vtkHexahedron::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[24]) override
{
vtkHexahedron::InterpolationDerivs(pcoords, derivs);
}
//@}
//@{
/**
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
* Ids are related to the cell, not to the dataset.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids
* can be used as inputs in algorithms such as vtkPolygon::ComputeNormal.
*/
static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2);
static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(4);
//@}
/**
* Static method version of GetEdgeToAdjacentFaces.
*/
static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2);
/**
* Static method version of GetFaceToAdjacentFaces.
*/
static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(4);
/**
* Static method version of GetPointToIncidentEdgesArray.
*/
static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3);
/**
* Static method version of GetPointToIncidentFacesArray.
*/
static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3);
/**
* Static method version of GetPointToOneRingPoints.
*/
static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3);
/**
* Static method version of GetCentroid.
*/
static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]);
/**
* Given parametric coordinates compute inverse Jacobian transformation
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
* function derivatives.
*/
void JacobianInverse(const double pcoords[3], double** inverse, double derivs[24]);
protected:
vtkHexahedron();
~vtkHexahedron() override;
vtkLine* Line;
vtkQuad* Quad;
private:
vtkHexahedron(const vtkHexahedron&) = delete;
void operator=(const vtkHexahedron&) = delete;
};
#endif