You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

258 lines
9.8 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkGreedyTerrainDecimation.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkGreedyTerrainDecimation
* @brief reduce height field (represented as image) to reduced TIN
*
* vtkGreedyTerrainDecimation approximates a height field with a triangle
* mesh (triangulated irregular network - TIN) using a greedy insertion
* algorithm similar to that described by Garland and Heckbert in their paper
* "Fast Polygonal Approximations of Terrain and Height Fields" (Technical
* Report CMU-CS-95-181). The input to the filter is a height field
* (represented by a image whose scalar values are height) and the output of
* the filter is polygonal data consisting of triangles. The number of
* triangles in the output is reduced in number as compared to a naive
* tessellation of the input height field. This filter copies point data
* from the input to the output for those points present in the output.
*
* An brief description of the algorithm is as follows. The algorithm uses a
* top-down decimation approach that initially represents the height field
* with two triangles (whose vertices are at the four corners of the
* image). These two triangles form a Delaunay triangulation. In an iterative
* fashion, the point in the image with the greatest error (as compared to
* the original height field) is injected into the triangulation. (Note that
* the single point with the greatest error per triangle is identified and
* placed into a priority queue. As the triangulation is modified, the errors
* from the deleted triangles are removed from the queue, error values from
* the new triangles are added.) The point whose error is at the top of the
* queue is added to the triangulaion modifying it using the standard
* incremental Delaunay point insertion (see vtkDelaunay2D) algorithm. Points
* are repeatedly inserted until the appropriate (user-specified) error
* criterion is met.
*
* To use this filter, set the input and specify the error measure to be
* used. The error measure options are 1) the absolute number of triangles
* to be produced; 2) a fractional reduction of the mesh (numTris/maxTris)
* where maxTris is the largest possible number of triangles
* 2*(dims[0]-1)*(dims[1]-1); 3) an absolute measure on error (maximum
* difference in height field to reduced TIN); and 4) relative error (the
* absolute error is normalized by the diagonal of the bounding box of the
* height field).
*
* @warning
* This algorithm requires the entire input dataset to be in memory, hence it
* may not work for extremely large images. Invoking BoundaryVertexDeletionOff
* will allow you to stitch together images with matching boundaries.
*
* @warning
* The input height image is assumed to be positioned in the x-y plane so the
* scalar value is the z-coordinate, height value.
*
* @sa
* vtkDecimatePro vtkQuadricDecimation vtkQuadricClustering
*/
#ifndef vtkGreedyTerrainDecimation_h
#define vtkGreedyTerrainDecimation_h
#include "vtkFiltersHybridModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
class vtkPriorityQueue;
class vtkDataArray;
class vtkPointData;
class vtkIdList;
class vtkDoubleArray;
class vtkFloatArray;
// PIMPL Encapsulation for STL containers
class vtkGreedyTerrainDecimationTerrainInfoType;
class vtkGreedyTerrainDecimationPointInfoType;
#define VTK_ERROR_NUMBER_OF_TRIANGLES 0
#define VTK_ERROR_SPECIFIED_REDUCTION 1
#define VTK_ERROR_ABSOLUTE 2
#define VTK_ERROR_RELATIVE 3
class VTKFILTERSHYBRID_EXPORT vtkGreedyTerrainDecimation : public vtkPolyDataAlgorithm
{
public:
vtkTypeMacro(vtkGreedyTerrainDecimation, vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Instantiate the class.
*/
static vtkGreedyTerrainDecimation* New();
//@{
/**
* Specify how to terminate the algorithm: either as an absolute number of
* triangles, a relative number of triangles (normalized by the full
* resolution mesh), an absolute error (in the height field), or relative
* error (normalized by the length of the diagonal of the image).
*/
vtkSetClampMacro(ErrorMeasure, int, VTK_ERROR_NUMBER_OF_TRIANGLES, VTK_ERROR_RELATIVE);
vtkGetMacro(ErrorMeasure, int);
void SetErrorMeasureToNumberOfTriangles()
{
this->SetErrorMeasure(VTK_ERROR_NUMBER_OF_TRIANGLES);
}
void SetErrorMeasureToSpecifiedReduction()
{
this->SetErrorMeasure(VTK_ERROR_SPECIFIED_REDUCTION);
}
void SetErrorMeasureToAbsoluteError() { this->SetErrorMeasure(VTK_ERROR_ABSOLUTE); }
void SetErrorMeasureToRelativeError() { this->SetErrorMeasure(VTK_ERROR_RELATIVE); }
//@}
//@{
/**
* Specify the number of triangles to produce on output. (It is a
* good idea to make sure this is less than a tessellated mesh
* at full resolution.) You need to set this value only when
* the error measure is set to NumberOfTriangles.
*/
vtkSetClampMacro(NumberOfTriangles, vtkIdType, 2, VTK_ID_MAX);
vtkGetMacro(NumberOfTriangles, vtkIdType);
//@}
//@{
/**
* Specify the reduction of the mesh (represented as a fraction). Note
* that a value of 0.10 means a 10% reduction. You need to set this value
* only when the error measure is set to SpecifiedReduction.
*/
vtkSetClampMacro(Reduction, double, 0.0, 1.0);
vtkGetMacro(Reduction, double);
//@}
//@{
/**
* Specify the absolute error of the mesh; that is, the error in height
* between the decimated mesh and the original height field. You need to
* set this value only when the error measure is set to AbsoluteError.
*/
vtkSetClampMacro(AbsoluteError, double, 0.0, VTK_DOUBLE_MAX);
vtkGetMacro(AbsoluteError, double);
//@}
//@{
/**
* Specify the relative error of the mesh; that is, the error in height
* between the decimated mesh and the original height field normalized by
* the diagonal of the image. You need to set this value only when the
* error measure is set to RelativeError.
*/
vtkSetClampMacro(RelativeError, double, 0.0, VTK_DOUBLE_MAX);
vtkGetMacro(RelativeError, double);
//@}
//@{
/**
* Turn on/off the deletion of vertices on the boundary of a mesh. This
* may limit the maximum reduction that may be achieved.
*/
vtkSetMacro(BoundaryVertexDeletion, vtkTypeBool);
vtkGetMacro(BoundaryVertexDeletion, vtkTypeBool);
vtkBooleanMacro(BoundaryVertexDeletion, vtkTypeBool);
//@}
//@{
/**
* Compute normals based on the input image. Off by default.
*/
vtkSetMacro(ComputeNormals, vtkTypeBool);
vtkGetMacro(ComputeNormals, vtkTypeBool);
vtkBooleanMacro(ComputeNormals, vtkTypeBool);
//@}
protected:
vtkGreedyTerrainDecimation();
~vtkGreedyTerrainDecimation() override;
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int FillInputPortInformation(int port, vtkInformation* info) override;
vtkTypeBool ComputeNormals;
vtkFloatArray* Normals;
void ComputePointNormal(int i, int j, float n[3]);
// ivars that the API addresses
int ErrorMeasure;
vtkIdType NumberOfTriangles;
double Reduction;
double AbsoluteError;
double RelativeError;
vtkTypeBool BoundaryVertexDeletion; // Can we delete boundary vertices?
// Used for convenience
vtkPolyData* Mesh;
vtkPointData* InputPD;
vtkPointData* OutputPD;
vtkDoubleArray* Points;
vtkDataArray* Heights;
vtkIdType CurrentPointId;
double Tolerance;
vtkIdList* Neighbors;
int Dimensions[3];
double Origin[3];
double Spacing[3];
vtkIdType MaximumNumberOfTriangles;
double Length;
// Bookkeeping arrays
vtkPriorityQueue* TerrainError; // errors for each pt in height field
vtkGreedyTerrainDecimationTerrainInfoType* TerrainInfo; // owning triangle for each pt
vtkGreedyTerrainDecimationPointInfoType* PointInfo; // map mesh pt id to input pt id
// Make a guess at initial allocation
void EstimateOutputSize(const vtkIdType numInputPts, vtkIdType& numPts, vtkIdType& numTris);
// Returns non-zero if the error measure is satisfied.
virtual int SatisfiesErrorMeasure(double error);
// Insert all the boundary vertices into the TIN
void InsertBoundaryVertices();
// Insert a point into the triangulation; get a point from the triangulation
vtkIdType AddPointToTriangulation(vtkIdType inputPtId);
vtkIdType InsertNextPoint(vtkIdType inputPtId, double x[3]);
double* GetPoint(vtkIdType id);
void GetPoint(vtkIdType id, double x[3]);
// Helper functions
void GetTerrainPoint(int i, int j, double x[3]);
void ComputeImageCoordinates(vtkIdType inputPtId, int ij[2]);
int InCircle(double x[3], double x1[3], double x2[3], double x3[3]);
vtkIdType FindTriangle(double x[3], vtkIdType ptIds[3], vtkIdType tri, double tol,
vtkIdType nei[3], vtkIdList* neighbors, int& status);
void CheckEdge(vtkIdType ptId, double x[3], vtkIdType p1, vtkIdType p2, vtkIdType tri, int depth);
void UpdateTriangles(vtkIdType meshPtId); // update all points connected to this point
void UpdateTriangle(vtkIdType triId, vtkIdType p1, vtkIdType p2, vtkIdType p3);
void UpdateTriangle(vtkIdType triId, int ij1[2], int ij2[2], int ij3[2], double h[4]);
int CharacterizeTriangle(int ij1[2], int ij2[2], int ij[3], int*& min, int*& max, int*& midL,
int*& midR, int*& mid, int mid2[2], double h[3], double& hMin, double& hMax, double& hL,
double& hR);
private:
vtkGreedyTerrainDecimation(const vtkGreedyTerrainDecimation&) = delete;
void operator=(const vtkGreedyTerrainDecimation&) = delete;
};
#endif