You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
7.9 KiB
C
215 lines
7.9 KiB
C
3 weeks ago
|
/*=========================================================================
|
||
|
|
||
|
Program: Visualization Toolkit
|
||
|
Module: vtkGenericCellTessellator.h
|
||
|
|
||
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
||
|
All rights reserved.
|
||
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
||
|
|
||
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
||
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
PURPOSE. See the above copyright notice for more information.
|
||
|
|
||
|
=========================================================================*/
|
||
|
/**
|
||
|
* @class vtkGenericCellTessellator
|
||
|
* @brief helper class to perform cell tessellation
|
||
|
*
|
||
|
* vtkGenericCellTessellator is a helper class to perform adaptive tessellation
|
||
|
* of particular cell topologies. The major purpose for this class is to
|
||
|
* transform higher-order cell types (e.g., higher-order finite elements)
|
||
|
* into linear cells that can then be easily visualized by VTK. This class
|
||
|
* works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell
|
||
|
* classes.
|
||
|
*
|
||
|
* This algorithm is based on edge subdivision. An error metric along each
|
||
|
* edge is evaluated, and if the error is greater than some tolerance, the
|
||
|
* edge is subdivided (as well as all connected 2D and 3D cells). The process
|
||
|
* repeats until the error metric is satisfied.
|
||
|
*
|
||
|
* A significant issue addressed by this algorithm is to insure face
|
||
|
* compatibility across neighboring cells. That is, diagonals due to face
|
||
|
* triangulation must match to insure that the mesh is compatible. The
|
||
|
* algorithm employs a precomputed table to accelerate the tessellation
|
||
|
* process. The table was generated with the help of vtkOrderedTriangulator;
|
||
|
* the basic idea is that the choice of diagonal is made by considering the
|
||
|
* relative value of the point ids.
|
||
|
*/
|
||
|
|
||
|
#ifndef vtkGenericCellTessellator_h
|
||
|
#define vtkGenericCellTessellator_h
|
||
|
|
||
|
#include "vtkCommonDataModelModule.h" // For export macro
|
||
|
#include "vtkObject.h"
|
||
|
|
||
|
class vtkCellArray;
|
||
|
class vtkDoubleArray;
|
||
|
class vtkCollection;
|
||
|
class vtkGenericAttributeCollection;
|
||
|
class vtkGenericAdaptorCell;
|
||
|
class vtkGenericCellIterator;
|
||
|
class vtkPointData;
|
||
|
class vtkGenericDataSet;
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
//
|
||
|
// The tessellation object
|
||
|
class VTKCOMMONDATAMODEL_EXPORT vtkGenericCellTessellator : public vtkObject
|
||
|
{
|
||
|
public:
|
||
|
vtkTypeMacro(vtkGenericCellTessellator, vtkObject);
|
||
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
||
|
|
||
|
/**
|
||
|
* Tessellate a face of a 3D `cell'. The face is specified by the
|
||
|
* index value.
|
||
|
* The result is a set of smaller linear triangles in `cellArray' with
|
||
|
* `points' and point data `internalPd'.
|
||
|
* \pre cell_exists: cell!=0
|
||
|
* \pre valid_dimension: cell->GetDimension()==3
|
||
|
* \pre valid_index_range: (index>=0) && (index<cell->GetNumberOfBoundaries(2))
|
||
|
* \pre att_exists: att!=0
|
||
|
* \pre points_exists: points!=0
|
||
|
* \pre cellArray_exists: cellArray!=0
|
||
|
* \pre internalPd_exists: internalPd!=0
|
||
|
*/
|
||
|
virtual void TessellateFace(vtkGenericAdaptorCell* cell, vtkGenericAttributeCollection* att,
|
||
|
vtkIdType index, vtkDoubleArray* points, vtkCellArray* cellArray, vtkPointData* internalPd) = 0;
|
||
|
|
||
|
/**
|
||
|
* Tessellate a 3D `cell'. The result is a set of smaller linear
|
||
|
* tetrahedra in `cellArray' with `points' and point data `internalPd'.
|
||
|
* \pre cell_exists: cell!=0
|
||
|
* \pre valid_dimension: cell->GetDimension()==3
|
||
|
* \pre att_exists: att!=0
|
||
|
* \pre points_exists: points!=0
|
||
|
* \pre cellArray_exists: cellArray!=0
|
||
|
* \pre internalPd_exists: internalPd!=0
|
||
|
*/
|
||
|
virtual void Tessellate(vtkGenericAdaptorCell* cell, vtkGenericAttributeCollection* att,
|
||
|
vtkDoubleArray* points, vtkCellArray* cellArray, vtkPointData* internalPd) = 0;
|
||
|
|
||
|
/**
|
||
|
* Triangulate a 2D `cell'. The result is a set of smaller linear triangles
|
||
|
* in `cellArray' with `points' and point data `internalPd'.
|
||
|
* \pre cell_exists: cell!=0
|
||
|
* \pre valid_dimension: cell->GetDimension()==2
|
||
|
* \pre att_exists: att!=0
|
||
|
* \pre points_exists: points!=0
|
||
|
* \pre cellArray_exists: cellArray!=0
|
||
|
* \pre internalPd_exists: internalPd!=0
|
||
|
*/
|
||
|
virtual void Triangulate(vtkGenericAdaptorCell* cell, vtkGenericAttributeCollection* att,
|
||
|
vtkDoubleArray* points, vtkCellArray* cellArray, vtkPointData* internalPd) = 0;
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Specify the list of error metrics used to decide if an edge has to be
|
||
|
* split or not. It is a collection of vtkGenericSubdivisionErrorMetric-s.
|
||
|
*/
|
||
|
virtual void SetErrorMetrics(vtkCollection* someErrorMetrics);
|
||
|
vtkGetObjectMacro(ErrorMetrics, vtkCollection);
|
||
|
//@}
|
||
|
|
||
|
/**
|
||
|
* Initialize the tessellator with a data set `ds'.
|
||
|
*/
|
||
|
virtual void Initialize(vtkGenericDataSet* ds) = 0;
|
||
|
|
||
|
/**
|
||
|
* Init the error metric with the dataset. Should be called in each filter
|
||
|
* before any tessellation of any cell.
|
||
|
*/
|
||
|
void InitErrorMetrics(vtkGenericDataSet* ds);
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* If true, measure the quality of the fixed subdivision.
|
||
|
*/
|
||
|
vtkGetMacro(Measurement, int);
|
||
|
vtkSetMacro(Measurement, int);
|
||
|
//@}
|
||
|
|
||
|
/**
|
||
|
* Get the maximum error measured after the fixed subdivision.
|
||
|
* \pre errors_exists: errors!=0
|
||
|
* \pre valid_size: sizeof(errors)==GetErrorMetrics()->GetNumberOfItems()
|
||
|
*/
|
||
|
void GetMaxErrors(double* errors);
|
||
|
|
||
|
protected:
|
||
|
vtkGenericCellTessellator();
|
||
|
~vtkGenericCellTessellator() override;
|
||
|
|
||
|
/**
|
||
|
* Does the edge need to be subdivided according to at least one error
|
||
|
* metric? The edge is defined by its `leftPoint' and its `rightPoint'.
|
||
|
* `leftPoint', `midPoint' and `rightPoint' have to be initialized before
|
||
|
* calling RequiresEdgeSubdivision().
|
||
|
* Their format is global coordinates, parametric coordinates and
|
||
|
* point centered attributes: xyx rst abc de...
|
||
|
* `alpha' is the normalized abscissa of the midpoint along the edge.
|
||
|
* (close to 0 means close to the left point, close to 1 means close to the
|
||
|
* right point)
|
||
|
* \pre leftPoint_exists: leftPoint!=0
|
||
|
* \pre midPoint_exists: midPoint!=0
|
||
|
* \pre rightPoint_exists: rightPoint!=0
|
||
|
* \pre clamped_alpha: alpha>0 && alpha<1
|
||
|
* \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
|
||
|
* =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
|
||
|
*/
|
||
|
int RequiresEdgeSubdivision(double* left, double* mid, double* right, double alpha);
|
||
|
|
||
|
/**
|
||
|
* Update the max error of each error metric according to the error at the
|
||
|
* mid-point. The type of error depends on the state
|
||
|
* of the concrete error metric. For instance, it can return an absolute
|
||
|
* or relative error metric.
|
||
|
* See RequiresEdgeSubdivision() for a description of the arguments.
|
||
|
* \pre leftPoint_exists: leftPoint!=0
|
||
|
* \pre midPoint_exists: midPoint!=0
|
||
|
* \pre rightPoint_exists: rightPoint!=0
|
||
|
* \pre clamped_alpha: alpha>0 && alpha<1
|
||
|
* \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
|
||
|
* =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
|
||
|
*/
|
||
|
virtual void UpdateMaxError(
|
||
|
double* leftPoint, double* midPoint, double* rightPoint, double alpha);
|
||
|
|
||
|
/**
|
||
|
* Reset the maximal error of each error metric. The purpose of the maximal
|
||
|
* error is to measure the quality of a fixed subdivision.
|
||
|
*/
|
||
|
void ResetMaxErrors();
|
||
|
|
||
|
/**
|
||
|
* List of error metrics. Collection of vtkGenericSubdivisionErrorMetric
|
||
|
*/
|
||
|
vtkCollection* ErrorMetrics;
|
||
|
|
||
|
/**
|
||
|
* Send the current cell to error metrics. Should be called at the beginning
|
||
|
* of the implementation of Tessellate(), Triangulate()
|
||
|
* or TessellateFace()
|
||
|
* \pre cell_exists: cell!=0
|
||
|
*/
|
||
|
void SetGenericCell(vtkGenericAdaptorCell* cell);
|
||
|
|
||
|
/**
|
||
|
* Dataset to be tessellated.
|
||
|
*/
|
||
|
vtkGenericDataSet* DataSet;
|
||
|
|
||
|
int Measurement; // if true, measure the quality of the fixed subdivision.
|
||
|
double* MaxErrors; // max error for each error metric, for measuring the
|
||
|
// quality of a fixed subdivision.
|
||
|
int MaxErrorsCapacity;
|
||
|
|
||
|
private:
|
||
|
vtkGenericCellTessellator(const vtkGenericCellTessellator&) = delete;
|
||
|
void operator=(const vtkGenericCellTessellator&) = delete;
|
||
|
};
|
||
|
|
||
|
#endif
|