You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

216 lines
7.8 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkFlyingEdges3D.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkFlyingEdges3D
* @brief generate isosurface from 3D image data (volume)
*
* vtkFlyingEdges3D is a reference implementation of the 3D version of the
* flying edges algorithm. It is designed to be highly scalable (i.e.,
* parallelizable) for large data. It implements certain performance
* optimizations including computational trimming to rapidly eliminate
* processing of data regions, packed bit representation of case table
* values, single edge intersection, elimination of point merging, and
* elimination of any reallocs (due to dynamic data insertion). Note that
* computational trimming is a method to reduce total computational cost in
* which partial computational results can be used to eliminate future
* computations.
*
* This is a four-pass algorithm. The first pass processes all x-edges and
* builds x-edge case values (which, when the four x-edges defining a voxel
* are combined, are equivalent to vertex-based case table except edge-based
* approaches are separable in support of parallel computing). Next x-voxel
* rows are processed to gather information from yz-edges (basically to count
* the number of y-z edge intersections and triangles generated). In the third
* pass a prefix sum is used to count and allocate memory for the output
* primitives. Finally in the fourth pass output primitives are generated into
* pre-allocated arrays. This implementation uses voxel cell axes (a x-y-z
* triad located at the voxel origin) to ensure that each edge is intersected
* at most one time. Note that this implementation also reuses the VTK
* Marching Cubes case table, although the vertex-based MC table is
* transformed into an edge-based table on object instantiation.
*
* See the paper "Flying Edges: A High-Performance Scalable Isocontouring
* Algorithm" by Schroeder, Maynard, Geveci. Proc. of LDAV 2015. Chicago, IL.
*
* @warning
* This filter is specialized to 3D volumes. This implementation can produce
* degenerate triangles (i.e., zero-area triangles).
*
* @warning
* If you are interested in extracting segmented regions from a label mask,
* consider using vtkDiscreteFlyingEdges3D.
*
* @warning
* This class has been threaded with vtkSMPTools. Using TBB or other
* non-sequential type (set in the CMake variable
* VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
*
* @sa
* vtkContourFilter vtkFlyingEdges2D vtkSynchronizedTemplates3D
* vtkMarchingCubes vtkDiscreteFlyingEdges3D vtkContour3DLinearGrid
*/
#ifndef vtkFlyingEdges3D_h
#define vtkFlyingEdges3D_h
#include "vtkContourValues.h" // Passes calls through
#include "vtkFiltersCoreModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
class vtkImageData;
class VTKFILTERSCORE_EXPORT vtkFlyingEdges3D : public vtkPolyDataAlgorithm
{
public:
static vtkFlyingEdges3D* New();
vtkTypeMacro(vtkFlyingEdges3D, vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Because we delegate to vtkContourValues.
*/
vtkMTimeType GetMTime() override;
//@{
/**
* Set/Get the computation of normals. Normal computation is fairly
* expensive in both time and storage. If the output data will be processed
* by filters that modify topology or geometry, it may be wise to turn
* Normals and Gradients off.
*/
vtkSetMacro(ComputeNormals, vtkTypeBool);
vtkGetMacro(ComputeNormals, vtkTypeBool);
vtkBooleanMacro(ComputeNormals, vtkTypeBool);
//@}
//@{
/**
* Set/Get the computation of gradients. Gradient computation is fairly
* expensive in both time and storage. Note that if ComputeNormals is on,
* gradients will have to be calculated, but will not be stored in the
* output dataset. If the output data will be processed by filters that
* modify topology or geometry, it may be wise to turn Normals and
* Gradients off.
*/
vtkSetMacro(ComputeGradients, vtkTypeBool);
vtkGetMacro(ComputeGradients, vtkTypeBool);
vtkBooleanMacro(ComputeGradients, vtkTypeBool);
//@}
//@{
/**
* Set/Get the computation of scalars.
*/
vtkSetMacro(ComputeScalars, vtkTypeBool);
vtkGetMacro(ComputeScalars, vtkTypeBool);
vtkBooleanMacro(ComputeScalars, vtkTypeBool);
//@}
//@{
/**
* Indicate whether to interpolate other attribute data. That is, as the
* isosurface is generated, interpolate all point attribute data across
* the edge. This is independent of scalar interpolation, which is
* controlled by the ComputeScalars flag.
*/
vtkSetMacro(InterpolateAttributes, vtkTypeBool);
vtkGetMacro(InterpolateAttributes, vtkTypeBool);
vtkBooleanMacro(InterpolateAttributes, vtkTypeBool);
//@}
/**
* Set a particular contour value at contour number i. The index i ranges
* between 0<=i<NumberOfContours.
*/
void SetValue(int i, double value) { this->ContourValues->SetValue(i, value); }
/**
* Get the ith contour value.
*/
double GetValue(int i) { return this->ContourValues->GetValue(i); }
/**
* Get a pointer to an array of contour values. There will be
* GetNumberOfContours() values in the list.
*/
double* GetValues() { return this->ContourValues->GetValues(); }
/**
* Fill a supplied list with contour values. There will be
* GetNumberOfContours() values in the list. Make sure you allocate
* enough memory to hold the list.
*/
void GetValues(double* contourValues) { this->ContourValues->GetValues(contourValues); }
/**
* Set the number of contours to place into the list. You only really
* need to use this method to reduce list size. The method SetValue()
* will automatically increase list size as needed.
*/
void SetNumberOfContours(int number) { this->ContourValues->SetNumberOfContours(number); }
/**
* Get the number of contours in the list of contour values.
*/
vtkIdType GetNumberOfContours() { return this->ContourValues->GetNumberOfContours(); }
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double range[2])
{
this->ContourValues->GenerateValues(numContours, range);
}
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double rangeStart, double rangeEnd)
{
this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd);
}
//@{
/**
* Set/get which component of the scalar array to contour on; defaults to 0.
*/
vtkSetMacro(ArrayComponent, int);
vtkGetMacro(ArrayComponent, int);
//@}
protected:
vtkFlyingEdges3D();
~vtkFlyingEdges3D() override;
vtkTypeBool ComputeNormals;
vtkTypeBool ComputeGradients;
vtkTypeBool ComputeScalars;
vtkTypeBool InterpolateAttributes;
int ArrayComponent;
vtkContourValues* ContourValues;
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int RequestUpdateExtent(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int FillInputPortInformation(int port, vtkInformation* info) override;
private:
vtkFlyingEdges3D(const vtkFlyingEdges3D&) = delete;
void operator=(const vtkFlyingEdges3D&) = delete;
};
#endif