You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

272 lines
9.2 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkCutter.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkCutter
* @brief Cut vtkDataSet with user-specified implicit function
*
* vtkCutter is a filter to cut through data using any subclass of
* vtkImplicitFunction. That is, a polygonal surface is created
* corresponding to the implicit function F(x,y,z) = value(s), where
* you can specify one or more values used to cut with.
*
* In VTK, cutting means reducing a cell of dimension N to a cut surface
* of dimension N-1. For example, a tetrahedron when cut by a plane (i.e.,
* vtkPlane implicit function) will generate triangles. (In comparison,
* clipping takes a N dimensional cell and creates N dimension primitives.)
*
* vtkCutter is generally used to "slice-through" a dataset, generating
* a surface that can be visualized. It is also possible to use vtkCutter
* to do a form of volume rendering. vtkCutter does this by generating
* multiple cut surfaces (usually planes) which are ordered (and rendered)
* from back-to-front. The surfaces are set translucent to give a
* volumetric rendering effect.
*
* Note that data can be cut using either 1) the scalar values associated
* with the dataset or 2) an implicit function associated with this class.
* By default, if an implicit function is set it is used to clip the data
* set, otherwise the dataset scalars are used to perform the clipping.
*
* @sa
* vtkImplicitFunction vtkClipPolyData
*/
#ifndef vtkCutter_h
#define vtkCutter_h
#include "vtkFiltersCoreModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
#include "vtkContourValues.h" // Needed for inline methods
#define VTK_SORT_BY_VALUE 0
#define VTK_SORT_BY_CELL 1
class vtkImplicitFunction;
class vtkIncrementalPointLocator;
class vtkSynchronizedTemplates3D;
class vtkSynchronizedTemplatesCutter3D;
class vtkGridSynchronizedTemplates3D;
class vtkRectilinearSynchronizedTemplates;
class VTKFILTERSCORE_EXPORT vtkCutter : public vtkPolyDataAlgorithm
{
public:
vtkTypeMacro(vtkCutter, vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Construct with user-specified implicit function; initial value of 0.0; and
* generating cut scalars turned off.
*/
static vtkCutter* New();
/**
* Set a particular contour value at contour number i. The index i ranges
* between 0<=i<NumberOfContours.
*/
void SetValue(int i, double value) { this->ContourValues->SetValue(i, value); }
/**
* Get the ith contour value.
*/
double GetValue(int i) { return this->ContourValues->GetValue(i); }
/**
* Get a pointer to an array of contour values. There will be
* GetNumberOfContours() values in the list.
*/
double* GetValues() { return this->ContourValues->GetValues(); }
/**
* Fill a supplied list with contour values. There will be
* GetNumberOfContours() values in the list. Make sure you allocate
* enough memory to hold the list.
*/
void GetValues(double* contourValues) { this->ContourValues->GetValues(contourValues); }
/**
* Set the number of contours to place into the list. You only really
* need to use this method to reduce list size. The method SetValue()
* will automatically increase list size as needed.
*/
void SetNumberOfContours(int number) { this->ContourValues->SetNumberOfContours(number); }
/**
* Get the number of contours in the list of contour values.
*/
vtkIdType GetNumberOfContours() { return this->ContourValues->GetNumberOfContours(); }
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double range[2])
{
this->ContourValues->GenerateValues(numContours, range);
}
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double rangeStart, double rangeEnd)
{
this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd);
}
/**
* Override GetMTime because we delegate to vtkContourValues and refer to
* vtkImplicitFunction.
*/
vtkMTimeType GetMTime() override;
//@{
/**
* Specify the implicit function to perform the cutting.
*/
virtual void SetCutFunction(vtkImplicitFunction*);
vtkGetObjectMacro(CutFunction, vtkImplicitFunction);
//@}
//@{
/**
* If this flag is enabled, then the output scalar values will be
* interpolated from the implicit function values, and not the input scalar
* data.
*/
vtkSetMacro(GenerateCutScalars, vtkTypeBool);
vtkGetMacro(GenerateCutScalars, vtkTypeBool);
vtkBooleanMacro(GenerateCutScalars, vtkTypeBool);
//@}
//@{
/**
* If this is enabled (by default), the output will be triangles
* otherwise, the output will be the intersection polygons
* WARNING: if the cutting function is not a plane, the output
* will be 3D poygons, which might be nice to look at but hard
* to compute with downstream.
*/
vtkSetMacro(GenerateTriangles, vtkTypeBool);
vtkGetMacro(GenerateTriangles, vtkTypeBool);
vtkBooleanMacro(GenerateTriangles, vtkTypeBool);
//@}
//@{
/**
* Specify a spatial locator for merging points. By default,
* an instance of vtkMergePoints is used.
*/
void SetLocator(vtkIncrementalPointLocator* locator);
vtkGetObjectMacro(Locator, vtkIncrementalPointLocator);
//@}
//@{
/**
* Set the sorting order for the generated polydata. There are two
* possibilities:
* Sort by value = 0 - This is the most efficient sort. For each cell,
* all contour values are processed. This is the default.
* Sort by cell = 1 - For each contour value, all cells are processed.
* This order should be used if the extracted polygons must be rendered
* in a back-to-front or front-to-back order. This is very problem
* dependent.
* For most applications, the default order is fine (and faster).
* Sort by cell is going to have a problem if the input has 2D and 3D cells.
* Cell data will be scrambled because with
* vtkPolyData output, verts and lines have lower cell ids than triangles.
*/
vtkSetClampMacro(SortBy, int, VTK_SORT_BY_VALUE, VTK_SORT_BY_CELL);
vtkGetMacro(SortBy, int);
void SetSortByToSortByValue() { this->SetSortBy(VTK_SORT_BY_VALUE); }
void SetSortByToSortByCell() { this->SetSortBy(VTK_SORT_BY_CELL); }
const char* GetSortByAsString();
//@}
/**
* Create default locator. Used to create one when none is specified. The
* locator is used to merge coincident points.
*/
void CreateDefaultLocator();
/**
* Normally I would put this in a different class, but since
* This is a temporary fix until we convert this class and contour filter
* to generate unstructured grid output instead of poly data, I am leaving it here.
*/
static void GetCellTypeDimensions(unsigned char* cellTypeDimensions);
//@{
/**
* Set/get the desired precision for the output types. See the documentation
* for the vtkAlgorithm::DesiredOutputPrecision enum for an explanation of
* the available precision settings.
*/
vtkSetClampMacro(OutputPointsPrecision, int, SINGLE_PRECISION, DEFAULT_PRECISION);
vtkGetMacro(OutputPointsPrecision, int);
//@}
protected:
vtkCutter(vtkImplicitFunction* cf = nullptr);
~vtkCutter() override;
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int RequestUpdateExtent(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int FillInputPortInformation(int port, vtkInformation* info) override;
void UnstructuredGridCutter(vtkDataSet* input, vtkPolyData* output);
void DataSetCutter(vtkDataSet* input, vtkPolyData* output);
void StructuredPointsCutter(
vtkDataSet*, vtkPolyData*, vtkInformation*, vtkInformationVector**, vtkInformationVector*);
void StructuredGridCutter(vtkDataSet*, vtkPolyData*);
void RectilinearGridCutter(vtkDataSet*, vtkPolyData*);
vtkImplicitFunction* CutFunction;
vtkTypeBool GenerateTriangles;
vtkSynchronizedTemplates3D* SynchronizedTemplates3D;
vtkSynchronizedTemplatesCutter3D* SynchronizedTemplatesCutter3D;
vtkGridSynchronizedTemplates3D* GridSynchronizedTemplates;
vtkRectilinearSynchronizedTemplates* RectilinearSynchronizedTemplates;
vtkIncrementalPointLocator* Locator;
int SortBy;
vtkContourValues* ContourValues;
vtkTypeBool GenerateCutScalars;
int OutputPointsPrecision;
private:
vtkCutter(const vtkCutter&) = delete;
void operator=(const vtkCutter&) = delete;
};
//@{
/**
* Return the sorting procedure as a descriptive character string.
*/
inline const char* vtkCutter::GetSortByAsString(void)
{
if (this->SortBy == VTK_SORT_BY_VALUE)
{
return "SortByValue";
}
else
{
return "SortByCell";
}
}
//@}
#endif