You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
3.9 KiB
C
113 lines
3.9 KiB
C
3 weeks ago
|
/*=========================================================================
|
||
|
|
||
|
Program: Visualization Toolkit
|
||
|
Module: vtkCorrelativeStatistics.h
|
||
|
|
||
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
||
|
All rights reserved.
|
||
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
||
|
|
||
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
||
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
PURPOSE. See the above copyright notice for more information.
|
||
|
|
||
|
=========================================================================*/
|
||
|
/*-------------------------------------------------------------------------
|
||
|
Copyright 2011 Sandia Corporation.
|
||
|
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
|
||
|
the U.S. Government retains certain rights in this software.
|
||
|
-------------------------------------------------------------------------*/
|
||
|
/**
|
||
|
* @class vtkCorrelativeStatistics
|
||
|
* @brief A class for bivariate linear correlation
|
||
|
*
|
||
|
*
|
||
|
* Given a selection of pairs of columns of interest, this class provides the
|
||
|
* following functionalities, depending on the chosen execution options:
|
||
|
* * Learn: calculate sample mean and M2 aggregates for each pair of variables
|
||
|
* (cf. P. Pebay, Formulas for robust, one-pass parallel computation of covariances
|
||
|
* and Arbitrary-Order Statistical Moments, Sandia Report SAND2008-6212, Sep 2008,
|
||
|
* http://infoserve.sandia.gov/sand_doc/2008/086212.pdf for details)
|
||
|
* * Derive: calculate unbiased covariance matrix estimators and its determinant,
|
||
|
* linear regressions, and Pearson correlation coefficient.
|
||
|
* * Assess: given an input data set, two means and a 2x2 covariance matrix,
|
||
|
* mark each datum with corresponding relative deviation (2-dimensional Mahlanobis
|
||
|
* distance).
|
||
|
* * Test: Perform Jarque-Bera-Srivastava test of 2-d normality
|
||
|
*
|
||
|
* @par Thanks:
|
||
|
* Thanks to Philippe Pebay and David Thompson from Sandia National Laboratories
|
||
|
* for implementing this class.
|
||
|
* Updated by Philippe Pebay, Kitware SAS 2012
|
||
|
*/
|
||
|
|
||
|
#ifndef vtkCorrelativeStatistics_h
|
||
|
#define vtkCorrelativeStatistics_h
|
||
|
|
||
|
#include "vtkFiltersStatisticsModule.h" // For export macro
|
||
|
#include "vtkStatisticsAlgorithm.h"
|
||
|
|
||
|
class vtkMultiBlockDataSet;
|
||
|
class vtkStringArray;
|
||
|
class vtkTable;
|
||
|
class vtkVariant;
|
||
|
class vtkDoubleArray;
|
||
|
|
||
|
class VTKFILTERSSTATISTICS_EXPORT vtkCorrelativeStatistics : public vtkStatisticsAlgorithm
|
||
|
{
|
||
|
public:
|
||
|
vtkTypeMacro(vtkCorrelativeStatistics, vtkStatisticsAlgorithm);
|
||
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
||
|
static vtkCorrelativeStatistics* New();
|
||
|
|
||
|
/**
|
||
|
* Given a collection of models, calculate aggregate model
|
||
|
*/
|
||
|
void Aggregate(vtkDataObjectCollection*, vtkMultiBlockDataSet*) override;
|
||
|
|
||
|
protected:
|
||
|
vtkCorrelativeStatistics();
|
||
|
~vtkCorrelativeStatistics() override;
|
||
|
|
||
|
/**
|
||
|
* Execute the calculations required by the Learn option.
|
||
|
*/
|
||
|
void Learn(vtkTable*, vtkTable*, vtkMultiBlockDataSet*) override;
|
||
|
|
||
|
/**
|
||
|
* Execute the calculations required by the Derive option.
|
||
|
*/
|
||
|
void Derive(vtkMultiBlockDataSet*) override;
|
||
|
|
||
|
/**
|
||
|
* Execute the calculations required by the Test option.
|
||
|
*/
|
||
|
void Test(vtkTable*, vtkMultiBlockDataSet*, vtkTable*) override;
|
||
|
|
||
|
/**
|
||
|
* Execute the calculations required by the Assess option.
|
||
|
*/
|
||
|
void Assess(vtkTable* inData, vtkMultiBlockDataSet* inMeta, vtkTable* outData) override
|
||
|
{
|
||
|
this->Superclass::Assess(inData, inMeta, outData, 2);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calculate p-value. This will be overridden using the object factory with an
|
||
|
* R implementation if R is present.
|
||
|
*/
|
||
|
virtual vtkDoubleArray* CalculatePValues(vtkDoubleArray*);
|
||
|
|
||
|
/**
|
||
|
* Provide the appropriate assessment functor.
|
||
|
*/
|
||
|
void SelectAssessFunctor(vtkTable* outData, vtkDataObject* inMeta, vtkStringArray* rowNames,
|
||
|
AssessFunctor*& dfunc) override;
|
||
|
|
||
|
private:
|
||
|
vtkCorrelativeStatistics(const vtkCorrelativeStatistics&) = delete;
|
||
|
void operator=(const vtkCorrelativeStatistics&) = delete;
|
||
|
};
|
||
|
|
||
|
#endif
|