You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

113 lines
3.9 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkCorrelativeStatistics.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2011 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
/**
* @class vtkCorrelativeStatistics
* @brief A class for bivariate linear correlation
*
*
* Given a selection of pairs of columns of interest, this class provides the
* following functionalities, depending on the chosen execution options:
* * Learn: calculate sample mean and M2 aggregates for each pair of variables
* (cf. P. Pebay, Formulas for robust, one-pass parallel computation of covariances
* and Arbitrary-Order Statistical Moments, Sandia Report SAND2008-6212, Sep 2008,
* http://infoserve.sandia.gov/sand_doc/2008/086212.pdf for details)
* * Derive: calculate unbiased covariance matrix estimators and its determinant,
* linear regressions, and Pearson correlation coefficient.
* * Assess: given an input data set, two means and a 2x2 covariance matrix,
* mark each datum with corresponding relative deviation (2-dimensional Mahlanobis
* distance).
* * Test: Perform Jarque-Bera-Srivastava test of 2-d normality
*
* @par Thanks:
* Thanks to Philippe Pebay and David Thompson from Sandia National Laboratories
* for implementing this class.
* Updated by Philippe Pebay, Kitware SAS 2012
*/
#ifndef vtkCorrelativeStatistics_h
#define vtkCorrelativeStatistics_h
#include "vtkFiltersStatisticsModule.h" // For export macro
#include "vtkStatisticsAlgorithm.h"
class vtkMultiBlockDataSet;
class vtkStringArray;
class vtkTable;
class vtkVariant;
class vtkDoubleArray;
class VTKFILTERSSTATISTICS_EXPORT vtkCorrelativeStatistics : public vtkStatisticsAlgorithm
{
public:
vtkTypeMacro(vtkCorrelativeStatistics, vtkStatisticsAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
static vtkCorrelativeStatistics* New();
/**
* Given a collection of models, calculate aggregate model
*/
void Aggregate(vtkDataObjectCollection*, vtkMultiBlockDataSet*) override;
protected:
vtkCorrelativeStatistics();
~vtkCorrelativeStatistics() override;
/**
* Execute the calculations required by the Learn option.
*/
void Learn(vtkTable*, vtkTable*, vtkMultiBlockDataSet*) override;
/**
* Execute the calculations required by the Derive option.
*/
void Derive(vtkMultiBlockDataSet*) override;
/**
* Execute the calculations required by the Test option.
*/
void Test(vtkTable*, vtkMultiBlockDataSet*, vtkTable*) override;
/**
* Execute the calculations required by the Assess option.
*/
void Assess(vtkTable* inData, vtkMultiBlockDataSet* inMeta, vtkTable* outData) override
{
this->Superclass::Assess(inData, inMeta, outData, 2);
}
/**
* Calculate p-value. This will be overridden using the object factory with an
* R implementation if R is present.
*/
virtual vtkDoubleArray* CalculatePValues(vtkDoubleArray*);
/**
* Provide the appropriate assessment functor.
*/
void SelectAssessFunctor(vtkTable* outData, vtkDataObject* inMeta, vtkStringArray* rowNames,
AssessFunctor*& dfunc) override;
private:
vtkCorrelativeStatistics(const vtkCorrelativeStatistics&) = delete;
void operator=(const vtkCorrelativeStatistics&) = delete;
};
#endif